Bottom rung

170px-Charles_Darwin_by_Julia_Margaret_Cameron_2It is not the strongest or the most intelligent who will survive but those who can best manage change. ― Charles Darwin

As I mentioned in my last post, I traveled to Germany in February and experienced first hand some of the ways that Energiewende – “energy transformation”, the national policy to eliminate fossil fuels and nuclear from the country’s energy mix – has manifested itself. One of the most striking was the way it has sparked innovation. Necessity is the mother of invention, after all. Dramatically rising energy costs have forced German industry, institutions, and governments at all levels to innovate, and in so doing, to adapt.

Energy efficiency is one of these adaptations. Germany is home to a building design standard called Passivhaus (which, as you might expect, translates as “passive house”). This standard uses aggressive insulation, thermally efficient windows, weather stripping, energy-efficient appliances, and heat recovery ventilation to bring the net energy consumption of a house close to zero. In the North Rhine-Westphalia city of Bottrop, I saw my second passivhaus. It was a low-income housing project.

That was a surprise. Here in Canada, I’ve come to associate highly efficient housing with wealth. Perhaps it’s terminology like “LEED gold” or “LEED platinum” that evokes riches by referring to precious metals. Perhaps it’s the reputation that an efficient building is an expensive building.

Perhaps it was the experience of my first passivhaus, the office of a respected and successful architectural firm in Guelph. It is a lovely two-storey Victorian home whose exterior is indistinguishable from neighbouring houses. There is one exception, being the complete absence of icicles – a dead giveaway that little or no heat is escaping into the attic space to melt the accumulated snow on the roof. (This winter in particular, there is plenty of accumulated snow.) Once inside, if you are particularly observant or, as in my case, have it pointed out to you by the owner, you notice that the walls are about a foot thick. I was awed to hear that the light fixtures and human occupants give off enough heat to keep the place comfortably warm. The furnace almost never runs.

Back to Bottrop, where the passivhaus I encountered was intended not for the wealthy, but for the poor.

The wisdom of making social housing hyper-efficient is inescapable. As energy prices rise in excess of the overall rate of inflation, the ones that feel it most keenly are the ones on the bottom rung of the income ladder. Recipients of social assistance, as well as those not dependent on the state but earning an income not far above the poverty line, are hit hard. They are faced with the impossible choice of either keeping their house warm, or feeding hungry mouths.

If the state provides housing that comes with a large and growing burden of energy bills, it will inevitably have to raise the amount of social assistance it delivers. If, on the other hand, the building can be kept at a livable temperature at little or no expense, the somewhat larger initial investment in the building pays for itself.

If, as in the case of the Bottrop building, there is actually an income stream from rooftop solar panels, the logic of energy inflation is turned on its head. The occupants actually benefit from rising prices for energy, since they are using little or none themselves and have an excess to sell to the grid (and, by extension, their neighbours). Higher energy costs actually mean that less social assistance is needed.

Passivhaus is an intriguing technological innovation. Similarly rooftop solar panels for electricity production. However, these are not nearly as fascinating as the social innovation of applying both technologies in the context of affordable housing.

Social Darwinism is a concept that has earned much derision and disdain from those with a social conscience. The idea that those unable to provide for themselves should be abandoned to their fate, thereby strengthening the human species, has been thoroughly discredited. However, the German experience has shown that the environmental stress of rising energy costs can lead to an innovation that helps the most disadvantaged and disenfranchised. Social Darwinism is being reborn, but in a way that promises to offer the “weak” not a cold shoulder, but a warm home and some welcome extra income.

I’ll give the last word to Charles Darwin again:

If the misery of the poor be caused not by the laws of nature, but by our institutions, great is our sin.

Posted in Uncategorized | 5 Comments

Energiewende

I spent this week at the penultimate meeting of the Transatlantic Urban Climate Dialogue (TUCD) in Germany, over and over hearing the term energiewende. Some of our hosts translated this as “energy change”, demonstrating characteristic German modesty. If I bought a Tesla Roadster, installed a solar array on the roof of my home to power it, ever after laughing at the price per litre posted at the local petrol station, and then referred to my accomplishment as changing a tire, it would be a similar understatement. Energiewende is no mere change. It is a revolution.

Visible signs of energiewende abound. Solar panels are a common sight on roofs of homes, factories, and institutions – the Free University of Berlin has several hundred kilowatts-worth of photovoltaics atop many buildings erected or annexed during the Cold War era when the city was hemmed in on all sides by the repressive and utterly democracy-free German Democratic Republic. As our train glided across the countryside at 200 kilometres per hour (120 mph) on the way from Berlin to Essen in the Ruhr valley region, we frequently squinted through the rain dotted windows to see farms of wind turbines rising above the landscape, sleek blades silently rotating with elegance and simplicity. From a hilltop in the Ruhr Valley city of Bottrop, a region once synonymous with coal mining, steel production, and air pollution, the silhouettes of massive power plants are visible on the horizon, their gargantuan stacks belching steam and carbon dioxide no longer, mute relics of a largely bygone carbon economy.

Energiewende makes itself felt in other, more subtle ways. Bathroom faucets often have no manual taps, but sensors that only dispense water when you present your hands – no absent-minded soul will ever leave the water running as they exit. Step off the hotel elevator onto your floor, and the hallway almost instantly lights up, activated by motion sensors that ensure all is dark when no one is there to benefit from the light. Step into your hotel room, and you will find all electricity extinguished – until you slip your access card into a slot on the wall by the door. On entering a Canadian hotel room, by contrast, you would find the lights blazing, as they would have been since the cleaner finished up many hours before. (This card slot has an added practical benefit of making sure I never misplace my room key.)

More subtle is the revolutionary way the room is heated. The hotel has no furnace. Hot water is piped into the building from a plant some distance away, a plant which takes waste heat from industry and puts it to work once more. (More on the idea of District Energy, or DE, in my previous post.) Alternatively, in places not yet served by the District Energy network, buildings are served by micro-CHP (Combined Heat and Power) units. As the name suggests, these devices provide both warmth and electricity. DE and CHP are both largely invisible, their components hidden away in basements or buried under pavement.

Finally, and least conspicuous of all, are the elements of the building envelope – energy-efficient windows, insulation, weatherstripping, and air exchange systems – which together help to make European buildings half as energy intensive as their North American counterparts. Our hosts in the city of Bottrop spoke of a number of housing projects which are “net positive”, meaning that the buildings produce more energy than they use. Some such projects are targeted at members of society on the lowest rung of the economic ladder – low-income earners and beneficiaries of social assistance. These people stand to be hardest hit by rising energy prices, and so stand to benefit the most from a dwelling that receives cheques rather than bills from the local utility.

When I think about my home in Ontario, I realize that the province has really missed the boat with its Green Energy Act. So much of the focus is on green energy generation – wind, solar, and biogas. There is an energy conservation component, but it is the poor cousin. The Feed-In Tariff (FIT) program has more than its fair share of flaws, but it stands head and shoulders above the SaveOnEnergy program.

Coal and oil are becoming ever more scarce and hence ever more expensive, and our environment cannot support their continued use. We need to replace all of our dirty energy generation systems with clean ones, make no mistake. This will be a hard hill to climb. But it will be far easier if the hill is shorter. At the same time as a revolution in green energy generation, North America needs a revolution in energy efficiency. District energy systems, combined heat and power, and building envelope improvements are all critical to shrinking the hill.

Our German TUCD hosts often spoke of everything they have yet to accomplish. They haven’t solved every problem – far from it. But they have made incredible progress. They have developed the technologies, the businesses, the public programs, and the social structures to make it happen. Through TUCD, they have been showing us how – we simply needed to ask.

In Germany, I’ve seen the hill. I’ve seen the way the German people are shrinking the hill at the same time as they are climbing it. And I am completely confident that North Americans can follow their lead.

We need our own energiewende. Our German friends are showing us the way.

Posted in Uncategorized | 7 Comments

Git ‘er done

Git-er-doneThat’s how a popular bumper sticker reads. To heck with correct spelling or grammar. Just do the job, no matter what it takes. Usually it’s on the back of a 4×4, and a muddy one. With a gun rack.

It’s a reflection of the North American psyche, and dates back to frontier times. You’ve got to get the job done, and you’ve got to rely on yourself. Your neighbor can take care of himself. If he asks for help that’s fine, but the starting out position is I can do it and I will do it and I will ask for help from nobody unless I am utterly desperate.

When the job that needs doing is heating a building, this mindset still prevails. Tell me what the best value for money is, and I’ll go for it. High efficiency natural gas furnace? Perfect. Git ‘er done. Electric baseboard heaters? Fine. Git ‘er done. Wood stove? That’ll do. Git ‘er done.

This snap decision has implications for the next two decades or more, because that’s how long many of these technologies will last. Natural gas is cheap now, but where will the price be in fifteen years? A building owner is choosing to be handcuffed to a particular fuel for a very long time.

The funny thing is, homeowners don’t actually want a furnace, a heat pump, a wood stove, nor is do they want natural gas, electricity, or firewood. What they want is heat.

What if they could just buy heat? What if they could opt to have a heat pipe coming into the house – much like that existing pipe supplying water, or natural gas, or that wire supplying electricity, or that cable supplying internet service? They wouldn’t need to fret about how the heat was generated. No more worries about the price of natural gas or whatever fuel source is in vogue. That’s someone else’s problem.

Oh, and while they’re at it, they can get rid of her big hot water tank. Why bother? Just use the heat coming out of that heat pipe to warm up the water, and Bob’s your uncle.

Sounds like a great idea, but obviously it’s fanciful. Who’s going to build a utility to supply heat?

Chances are that a European reading this is feeling awfully puzzled. What’s this guy talking about? We have a heat utility, and we have for decades. All across the continent, communities have built heat utilities. This type of business is built on a technology is called District Energy (DE).

Oh, DE exists in North America, too, but most people don’t know about it. Universities have been doing it for the longest time. My alma mater, the University of Toronto, has subterranean steam tunnels running all over campus – a fact that the engineering prank squad has long used as a convenient way to access buildings by means less obvious than the front door. You won’t find a conventional furnace anywhere on campus. One big plant supplies the entire university with heating and cooling, and those tunnels get the heat or the cold wherever it needs to go.

The Europeans have done it. Universities have done it. Why haven’t North American communities done it?

One big reason is that can-do attitude, which goes hand-in-hand with a going-it-alone attitude. Whenever a North American is trying to crack a problem, the first question they ask is not, “How can I team up with some other people to solve this?”

DE is all about teamwork. If my furnace runs less than half the time, and ditto for my neighbor, why don’t we just share one furnace? Half the capital cost, half the maintenance. Take that up a notch or two, and what do you get? An entire town or city sharing a furnace. That’s DE.

This kind of teamwork is foreign to most North Americans. Oh, there are long standing traditions of mutual support in times of crisis, and of banding together for barn raisings, but the prevailing attitude is self-reliance unless there is no other option.

We can’t afford this attitude any more. A DE system is more than just a way to save capital costs by sharing our heating equipment. It is also more efficient than having a furnace in every building. Put another way, failing to implement DE is wasteful. In an age of dramatically rising energy costs and extensive harmful effects of greenhouse gas emissions, we cannot afford to the waste that is inevitable where DE is absent.

There’s more. For heavy industry, heat is often a waste product, and it costs them a lot of money to get rid of it. By connecting a DE system to such enterprises, that heat can be spirited away for a nominal cost and supplied to residences, institutions, and commercial buildings. One man’s trash becomes another man’s treasure.

Finally, DE offers a platform for changing the way a community obtains heat. To start, the central heat source is likely a natural gas furnace or boiler. But through economies of scale, DE provides the opportunity to diversify away from a single fuel source – something that is difficult or impossible for someone going it alone. Large-scale geo-exchange systems can use electricity to supply heat, reducing dependence on the price of natural gas. Renewable biofuels like wood pellets can be used for fuel. Anaerobic digesters can convert agricultural waste into renewable biogas. Finally, solar thermal can be deployed on a scale that is far more economical than is possible for an individual building, exploiting a heat source that is free. Coupled with thermal storage technologies, a community can use DE to move toward heating that is 100% renewable.

It’s cheaper. It’s more efficient. It paves the way to a post-fossil-fuel future. DE is an idea whose time has come.

Git ‘er done.

Posted in Uncategorized | 6 Comments